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p The importance of mathematics 
T 

in the Space Age* 

R A Y M O N D  H .  W I L S O N ,  J R . ,  Chief, Applied Mathematics, 
National Aeronautics and Space Administration, Washington, D.C. 

The distance and immensity of outer space, as  well 
as the enormity of wasted expense and danger of a “miss,” 

clearly place unusually high desirability on mathematical 
technique as the best approach to many  problems in this area. 

As A FORMER full-time worker a t  the chal- 
lenging and nerer-ending task of leading 
young minds into the ways of mathemati- 
cal thinking, I welcome the privilege of 
reviewing before this important group of 
mathematics teachers some new develop 
ments in the significance of their profes- 

What is the meaning of “The Space 
Age,’’ a phrase which was born and has 
now come into common use (by nonscien- 
tists as well as by scientists), all within the 
past five or six years? Everyone feels, 
without knowing, the meaning of this 
phrase, just as they did for all other com- 
mon words of the English language, long 
before Samuel Johnson and Xoah Webster 
composed their dictionaries. I believe that 
this required meaning, which everyone 
feels he knows without putting it into 
words, is essentially and fundamentally a 
mathematical concept: “space” means 
three degrees of freedom for positional 
movement-the greatest number that is 
practically possible, 

Before the Space Age, all life we know of 
was confined to movement at the surface 
of the earth; it had only two degrees of 
freedom, as viewed from a large-scale 
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* Address delivered August 24,1963, at the general 
session of the twenty-third summer meeting of the 
National Council of Teachers of Mathematics in 
Eugene, Oregon. 

standpoint. As a small-scale model of this 
habitat, a fairly accurate suggestion has 
been to consider the earth as like an ordi- 
nary billiard ball, of which 71 percent of 
the surface is wet. The earth’s deviations 
from a true mathematical sphere, includ- 
ing its general flattening, the roughness of 
the highest mountains, and water of the 
deepest seas would be approximately r e p  
resented to scale by a wet ball sufficiently 
round and smooth as to be quite accept- 
able for official billiard playing! On a two- 
inch billiard ball a general flattening of 
only three thousandths of an inch with 
local high points and water films only one 
thousandth of an inch from a perfect 
spherical surface would be approximately 
as smooth and wet as any true scale model 
of the earth. Thus all l i e  before the Space 
Age has been confined to within 6 miles of 
a perfectly spheroidal surface extending 
many thousands of miles. The deviations 
of human beings from strictly two-dimen- 
sional activity was thus less than 1 part in 
a thousand, and by the principles of the 
calculus of finite differences, the error 
committed by considering human activity 
to be strictly superficial would be less than 
1 part in a million. All history before the 
Space Age could be properly designated 
the “Surface Age.” 

Although man’s large-scale activities 
before the Space Age were essentially 
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two-dimensional, his small-scak ,wprks 
were, as we all know, fully three-dimez- 
sional. But it required many centuries of 
abstract mathematical thinking, summa- 
rized by the ancient Greek mathematician 
Euclid in his Solid Geometry, to show that 
the same principles used for describing and 
measuring small-scale objects shaped as 
spheres, cubes, pyramids, and cones could 
be extended to indefinite distances in all 
directions from the observer. These con- 
cepts and principles involving mathemati- 
cal space were applied to and derived from 
progressively larger scale problems involv- 
ing the physical world: in surveying, in 
navigation, and in astronomy. Thus i t  
might be said that the ancient Greek 
mathematicians and astronomers were 
mentally prepared for the Space Age some 
two thousand years before it became an 
actuality, a t  least so far as the required 
geometrical concepts were concerned. 
However, much in the way of spreading 
and developing such knowledge, as well as 
in advancing the technical arts, remained 
to be done before man could think practi- 
cally of physical escape from his essen- 
tially two-dimensional range of activity. 

A most important practical step in prog- 
ress toward the Space Age was in naviga- 
tion, namely, the revolution from thinking 
in terms of a flat surface as representing 
the earth to considering the surface of the 
earth as spherical. Thus we might speak 
with reference to the geography of ancient 
times as the “Flat Surface Age.” In the 
fifteenth century of the Christian era this 
was revolutionized by the activities of da 
Gama, Columbus, and Magellan to be- 
come the “Spheroidal Surface -4ge” which 
likewise, in turn, became the “Space Age,” 
because of astronautical achievements 
beginning in A.D.  1957. 

Although the ancient astronomers had 
cited clear proofs of the spheroidal form of 
the earth, such as the circularity of its 
shadow during lunar eclipses, and Eratos- 
thenes had actually succeeded in making a 
good estimate of the earth’s diameter by 
measuring the change in celestial direction 

of the vertical with north-south change of 
position, there had been little or no practi- 
cal application of this new knowledge to 
travel and navigation. Most sailing was 
within short ranges of latitude and not far 
from landmarks, especially within the 
Mediterranean Sea and, to a lesser degree, 
around other coasts of Europe and Asia. 
Long cross-country travel, such as the 
famous journey from Italy to China by 
Marco Polo, could be accomplished by 
landmarks alone. Even da Gama’s epoch- 
making cruise around South Africa to 
India depended on following a continuous 
coastline. On all these journeys the earth’s 
surface could, for all practical navigational 
purposes, be considered flat. 

The continuing need of European com- 
mercial interests to find more economically 
feasible routes to the Far East inspired the 
application by Columbus of mathematical 
reasoning and astronomical knowledge to 
practical navigation. On a flat earth, one 
could naturally think of reaching a point 
to the east of oneself only by sailing east- 
ward; whereas consideration of a sphe- 
roidal surface clearly indicated also an 
alternative westward route. That the 
monarchs of Spain were most easily con- 
vinced by this mathematical reasoning of 
Columbus may be no mere accident in 
terms of the history of mathematics. Less 
than a century before Ferdinand and 
Isabella, Spain mas dominated by the 
Moslems, whose culture then led the world 
in mathematics and astronomy. At any 
rate, Columbus successfully inaugurated 
the “Spheroidal Surface Age” by sailing 
westward from Europe for India and thus 
making a landfall on islands which he 
therefore called “The Indies.” The native 
peoples there he naturally called “In- 
dians,” as, indeed, they remain officially 
designated even to this day, although they 
and their country are nearly 10,000 miles 
from India. 

From the time of Columbus until the 
Space Age, all progress in practical naviga- 
tion and means of travel was directed 
toward facilitation of movement only 
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around the spheroidal surface of the earth. 
Even the invention of air travel for move- 
ment within a few miles above the solid or 
liquid surface of the earth made little 
change from a mathematical standpoint; 
the air available for such travel was still 
within the same few miles of a spheroidal 
earth surface, being merely an upper and 
lighter layer of the earth’s fluid surface. 
Nevertheless, the “Air Age,” which devel- 
s?ed approximately with the present 
century, could be cons dered as a transi- 
tion between strictly surface travel and 
the full three-dimensional travel possible in 
space. The mobility of the aviator in the 
third dimension, while relatively small, is 
real, and so forms a logical introduction to 
some end-point piloting problems of space 
travel. Perhaps even more important myas 
the more recent development of jet propul- 
sion in aircraft, which formed a basis for 
progress in the similar rocket propulsion so 
necessary for acceleration and launching of 

Columbus did not have to make new 
discoveries in mathematics or astronomy; 
he had only to apply knowledge already 
hundreds of years old to the travel prob- 
lems of his day. Similarly with the abstract 
problems which had to be met for success- 
ful inauguration of the Space Age: most of 
the necessarry basic mathematics, physics, 
and astronomy had existed for a long time 
and needed only to be properly adapted 
and applied. But such adaptation and 
application of abstract principles to real 
circumstances, or even recognition of the 
possible appropriateness of such applica- 
tion, is often the part of the solution to 
such problems which takes the longest to 
discover and which is most difficult to 
bring into practical effect. 

The age of flat-earth travel (“Plane 
Sailing,” in modern navigational lan- 
guage) led to the development of much of 
what we now call “Elementary Mathema- 
tics.” The most primitive of its aspects, 
land surveying (necessitated by floods of 
the Nile, Tigris, and Euphrates rivers), is 
said to have been the inspiration for much 
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of plane geometry and plane trigonometry. 
Then when navigation rcquired estimation 
of distances to landmarks for plotting and 
using charts of sailing waters, these mathe- 
matical arts were ready for adaptation to 
the problem. Euclidean geometry per- 
fected the general abstract considerations 
of physical forms and their properties. Its 
natural extension by the ancient Greeks to 
the third dimension, which we nowadays 
call solid geometry, included special stud- 
ies of the properties of spheres and sphe- 
roids, thus laying the foundation for ad- 
vance to the “Spheroidal Surface Age” to 
be initiated by Columbus many centuries 
later. On the other hand, trigonometry is 
more useful than abstract geometry for 
problems of practical measurement, since 
by using available measurements of seg- 
ments and angles, inaccessible segments 
and angles may be computed. Original 
development of trigonometry and the 
general arts of computation took place in 
the Middle East, by the Egyptians, by the 
Phoenicians, in India, and, more recently, 
in the Moslem Arabian culture. Our deci- 
mal arithmetic with its so-called Arabic 
numerals probably originated in India, 
while the generalization and abstraction of 
arithmetic principles covered by the Ara- 
bian term “Algebra” had similar origins. 
Lack of these particular arts of computa- 
tion among the ancient Greeks and Ro- 
mans severely handicapped their practice 
of navigation, and may partly account for 
the delay of advancement beyond “Plane 
Sailing” concepts until the time of Colum- 
bus. Combination of trigonometry with 
the geometry of the sphere to form the 
science of spherical trigonometry made 
possible the measurements on the surface 
of a sphere so necessary to successful de- 
velopment of the resultant “Spheroidal 
Surface Age,” and are still today essential 
for air and surface navigation. Also, only 
when Greek geometry and Arabian arith- 
metic and algebra were finally combined in 
Europe during the sixteenth and seven- 
teenth centuries to form the single subject 
called mathematics was the stage of ab- 
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stract thought set for most of the develop- 
ments of modern science and technology, 
including the Space Age. 

Almost all the developments which have 
produced the Space Age depend more or 
less directly on mathematical and physical 
principles invented or, at least, collected 
and synthesized by Sir Isaac Newton just 
before 1700. Newton not only enunciated 
the various laws of mechanical forces and 
motions and the combinations of their 
effects which describe and predict all mo- 
tions, including those in outer space, but 
he worked out the geometric and algebraic 
approaches for mathematical application 
of these principles in space. Of these geo- 
metric approaches, the coordinate or ana- 
lytic geometry invented by Descartes just 
before Newton’s time is perhaps the most 
important. This solid analytic geometry, 
as we now call it, which presents scalar 
directional measurements of points in 
space with reference to a zero-point or 
origin which is the intersection of three 
planes of reference, thus furnishes an ap- 
proach for expressing directional relations 
between point positions on geometric fig- 
ures so that the forms and theorems of 
Euclidean geometry may be studied by 
means of algebra. Furthermore, forms and 
relationships never dreamt of in Greek ge- 
ometry may be invented and analyzed di- 
rectly by algebraic concepts and manipula- 
tions. Many such algebraic relationships 
describing motions in space of masses such 
as planets of the solar system had also been 
developed just before Newton’s time by 
the astronomer John Kepler. Using Kep- 
ler’s kinematical astronomy, Descartes’ 
mathematics, and his own hypothesis of 
universal gravitational forces between 
masses, Newton was able to lay the foun- 
dation of the science of mechanics which is 
now used in the solution of all mathemati- 
cal problems of the Space Age, from rocket 
design and propulsion to deduction of the 
path followed by a rocket flying through 
the earth’s atmosphere, a spacecraft orbit- 
ing about the earth or moon, or a probe 
approaching some more distant planet. 

The basic approach for calculating all 
such motions is Newton’s equation of 

motion, a = -. This states that accelera- 

tion a or rate of change of velocity of any 
freely moving body occurs only by action 
of a force on the body, and that this accel- 
eration is always in the direction of the 
impressed force and is measured by the 
magnitude of the force F divided by the 
mass m of the body. For freely moving 
bodies in outer space, Newton suggested 
that the main impressed force could only 
be what we on the earth call gravitational 
attraction, and that such attraction be- 
tween any two bodies in the universe is 
proportional both to their masses and to 
the inverse square of the distance r sep- 
arating them; that is, 

F 
m 

mM 
r2  

But acceleration would always cause . 
change of distance, which thereby would 
cause change of the gravitational force, * 

which in turn would cause a change in the 
acceleration-a never-ending chain of 
changes which flows evcnly along with 
passage of time. How could one deal math- 
ematically with such continuously flowing 
variables? Algebra had no ready means for 
such an operation, although some re- 
searches of the ancient Greek geometers 
into certain problems such as those related 
to squaring the circle had used some such 
manner of thinking. Newton solved this 
key difficulty by inventing and developing 
“fluxions” (literally, $ow-functions) , which 
today we call differentials or time-deriva- 
tives, and teach in a subject called calcu- 
lus. Thus, the acceleration of B mass was 
considered to be merely the time-deriva- 
tive of its velocity, which in turn was 
merely the time-derivative of its position 
in space. Newton’s equation of motion 
stating that attractive force equals mass 
times acceleration could, using his “flux- 
ions,” be explicitly written for the effect of, 
say, the earth on a space-probe of unit 
mass. The equation would be written in 

F=-. 

- 
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terms of the position of the probe with 
respect to  the earth and the time-deriva- 
tivcs (or differentials) of this position as 
what we would call nowadays a “differen- 
tial equation,” 

” (F)  = mass of earth 
dt dt r2 

where t is the time coordinate. Solving such 
an equation to  find the position of the 
probe at  any time requires not only alge- 
bra, but an operation inverse to that of 
differentiation (Le., forming the time- 
derivative), an operation which we now 
call integration. 

If the space probe were considered to be 
affected by the gravitation of the moon as 
well as that of the earth, there would be 
another similar equation for the moon 
which must be solved simultaneously with 
the equation for the earth. This sounds 
easy, but it has never yet been completely 
and explicitly accomplished; it is the fa- 
mous “Problem of Three Bodies.” We have 
thus reached the most advanced frontier of 
the present mathematical art  by consider- 
ing such a simple question as the motion of 
a spacecraft from the earth to the moon. 
However, such problems as this one, which 
cannot be solved with closed explicitness 
and complete accuracy, can usually be 
solved in numerical form by approximation 
methods to any degree of accuracy which 
available computational facilities will per- 
mit. Practical means for the very extensive 
computations needed in such cases have 
been vastly extended in recent years with 
technical developments such as electronic 
digital computing machines. The mathe- 
matical aspect and basis of such comput- 
ing operations is called numerical analysis. 
Thus we see how Newton’s original mathe- 
matical theories of bodies falling under 
gravitational forces (which are said by 
tradition to have been applied first to the 
homely case of a falling apple) are used 
nowadays to predict and determine rocket 
trajectories, manned space capsule orbits, 
and the schedule of deep space probes to 
the planets Venus and Mars, as well as to 
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the moon. Such is the universal adaptabil- 
ity and applicability of sound mathemati- 
cal principles. Indeed, other basic Kew- 
tonian principles are used, also, not only to  
get such a manned capsule off the ground, 
but to get it back with comfort and safety 
to the astronaut. Newton’s Law that “for 
every action there is an equal and opposite 
reaction” is the basis for the possibility of 
rockets’ attaining the 5 miles per second 
necessary to attain a free orbit around the 
earth. In launching plans the air resistance 
to acceleration must be taken into ac- 
count. The suggestion that such air resist- 
ance is usually proportional to the air 
density, to the square of the velocity, and 
to the area of the cross section of the mov- 
ing object was first stated by Newton. 
Reentry of the astronaut to land on the 
earth at a safe velocity is performed by 
greatly increasing his cross-sectional area 
and, hence, air resistance, by a parachute. 
Newton’s general mathematical state- 
ment, 

air resistance = pAv2 

where p is the air density, A the effective 
cross section, and v the velocity of the 
astronaut’s capsule and appendages, is 
thus applicable to both the launching and 
reentry operations. 

The fact that any precise description of 
the orbit of an astronaut’s capsule requires 
plenty of Descartes’ solid analytic geome- 
try is indicated by Figure 1. Here the 
Z-axis is parallel to the axis of the earth 
with positive direction northward. ILote 
that the positive direction of the X-axis is 
toward the point of the vernal equinox in 
the sky, and to refer the satellite to longi- 
tudes on the earth requires much of the 
spherical trigonometry which is the basis 
of all mathematical astronomy, as does 
effective tracking of any artificial satellite 
in its orbit. To solve the more special prob- 
lems of space science in which it is sought 
to develop subtle conclusions as to the 
shape of the earth from irregularities of a 
satellite’s orbit, or to explain such experi- 
mentally suggested results as the shape 
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and extent of a ring of ionized particles 
circulating in the magnetic field of the 
earth, the classical mathematical subjects 
algebra, geometry, trigonometry, and 
differential and integral calculus are all of 

I shall illustrate this last point by a few 
remarks about one or two of these prob- 
lems on which I have worked in recent 
years. One problem is : how would the spin 
of a space vehicle be affected by a natural 
magnetic field such as that of the earth, the 
force field which directs our compass 
needles? The principles of electrophysics 
tell us that a closed electrically conducting 
loop, spinning in a magnetic field, is slowed 
down by a torque proportional to the con- 
ductivity and enclosed area of the loop, to 

essential and key importance. __- - 

Z 

its angular velocity, and to the square of 
the effective magnetic field perpendicular 
to its axis of spin. For material objects 
such as actual satellite parts, this torque 
must be formulated by application of the 
integral calculus to the special analytic 
geometry of the part in question. Thus, for 
a thin cylindrical shell having a height 
equal to its diameter we find by integra- 
tion over the shell for this braking torque 
C an equation such as 

C=  18n- - upzH2wr4Ar, ( '3 
where u is the electric conductivity, p H  the 
effective magnetic field inside the metal 
due to the earth's field, w the spin rate in 

TO NORTH 
CELESTIAL POLE 

NORTH POLE t ,OF EARTH 

Figure 1 
Geometrical relations of the inertial and geographical coordinate systems 

as to positions of a satellite and any pole (center) of deviation 
of the geoidal potential function from exact spherical form. 
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rotations per second, r the radius of the 
cylindrical shell, and Ar the thickness of 
that shell. After the torques for all parts of 
any satellite have been computed, one 
may apply Newton’s equation of motion 
stated above, adapted to relating such 
torque to angular acceleration, to predict 
the angular spin rate of the satellite at any 
future time. 

Satellite spin rates are often followed as 
part of the operations of tracking them, in 
order that the mathematical theory of 
spin damping may be compared with the 
observed facts. One good example of this 
was the so-called Solar Radiation Satellite, 
which was launched in 1960. Figure 2 
shows a graph in which this satellite’s 
observed spin rates are plotted as open or 
dark circles. The curve through this set of 

e 

observation$ represents predicted spin 
rates according to the mathematical theory 
of magnetic damping described above, 
assuming the known magnetic field of the 
earth. The representation seems satisfac- 
tory. Conversely, if such a satellite were 
spinning in the unknown magnetic field 
about some other planet, this field could be 
calculated from the spin-damping theory, 
provided the spin rate could be observed. 
Also, for many purposes the spin rate of 
satellites needs to be planned ahead, and 
this mathematical theory would form a 
practical basis for such planning. 

I n  order to measure the spin rate or 
rotation of an artificial space vehicle, it is 
necessary, as for any natural celestial 
body; to obseme pe;;lctdic variations in the 
radiation intensity received from that 

Figure 2 

Observed spin rate us. time for Satellite 1960 Eta 2 (Solar Radiation I). 
Straight line represents ezponential decay with relaxation time of 66 days. 

Curve includes additional linear decay of 3.3 X lop6 rotations per sewnd per day. 
Eztrapolating the curve shows rotation to have stopped on J . D .  (Julian date) 2,437,397 

(April  8, 1961). (Julian date is dejined as the number of days elapsed 
since Greenwich Mean Noon, January 1,4713 B.c.) 
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. 
body. Such measurements ,of rotation 
could be made very easily and accurately 
by optical observations on an artificial 
body, provided its surface for reflecting 
sunlight were at least partially fabricated 
as polyhedral, with many highly reflecting 
facets. Solar reflection from the facets 
would produce a set of discontinuous 
flashes for which the flash rate per second 
is given by the equation 

wN(c0s L) 
n= J 

where w is the spin rate per second, N the 
total number of such facets which would 
completely cover a sphere, and L is the 
“latitude” on such a sphere of the cur- 
rently reflecting facets. Such a scheme is 
presently being used by Bell Telephone 
Laboratories on their Telstar satellite, in 
order to determine its w and L, quantities 
which are essential to know for the success- 
ful relay of TV and other signals between 
America and other continents. Another 
incidental advantage of such reflecting 
facets on a space vehicle is that the optical 
brightness of each flash would be greatly 
increased over that from a smooth, non- 
faceted surface. Such a device, called a 
“heliotrope,” for transmitting signals over 
great distances by solar reflection from a 
qat mirror, was first invented and its ad- 
vantages proved mathematically by Carl 
Friedrich Gauss, who also applied j+, to 
surveying, in the course of his field opera- 
tions for determining the precise size and 
shape of the earth. 

Thus mathematics is of special practical 
importance when applied to scientific and 
t,echnical problems outside the range of 
feasible hit-and-miss experimentation. A 

273 

new emphasis in mathematical thinking 
for the Space Age is demanded by the fact 
that “space” implies activity in three 
equally important dimensions, so that the 
predominately two-dimensional thinking 
appropriate to our former confinement 
within a few miles of the wide surface of 
the earth becomes grossly inadequate. For 
mathematical education this development 
suggests renewed attention, at as early an 
age as possible, to studies involving three- 
dimensional (solid) geometry and to sphe- 
rical trigonometry. Also in all mathemati- 
cal subjects the “word problem” provides 
most important practice in bridging the 
gap between the principles of mathematics 
and the conditions of physical reality; that 
is, practice in applied mathematics. 

The preceding examples illustrate the 
general application of mathematics in the 
Space Age, as in all technological science, 
to problems for which experimentation for 
direct measurement of all special cases 
involved might be impossible or hopelessly 
expensive. A mathematical approach using 
rigorous thinking may yield general formu- 
lation having widespread applicability. 
Numerical analysis can render the most 
complicated mathematical formulations 
susceptible to approximate computation 
of particular cases for practical use. In all 
such work on Space Age problems, the 
basic mathematical subjects algebra, ge- 
ometry (both plane and solid), and trigo- 
nometry (both plane and spherical) are 
most often used as the international lan- 
guage of rigorous thinking. Study of them 
is a key to powerful results in fundamental 
research in many fields, and teaching of 
them constitutes a most important contri- 
bution to our progress in the Space Age. 

. 
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